Some observations on Mechanized Processing of Small Millets

for

Expert Consultation on Millets Processing Machines

WASSAN, Secunderabad

by

Dr. Dwijendra Nath Guru (Dwiji)

The Millet Foundation Bengaluru

In this presentation

- Challenges in SM processing
- Available hulling technologies for SMPUs
- Ease of use criteria for comparing hulling technologies
- Conclusion

Foxtail millet hulls discarded by a bird after eating up the kernel inside; note the beautiful single split in the hull

Challenges in SM processing

- Size ! They are small !!
- Varieties classic eg. of localization
- Variations due to cultivation practices & micro climate
- Infestation Free processing !!

+91-99000-54878 dwiji@themillet.org

Grain properties

- Used in processing
 - Size
 - Cleaning
 - Grading
 - Mass / Weight
 - Cleaning
 - Destoning
 - Grading
 - Coefficient of Friction
 - Cleaning
 - Removing unhulled grains from millet rice

- Cannot grip/get a hand on
 - Elastic Modulus
 - Husk
 - Kernel
 - Hardness
 - Husk
 - Kernel
 - Other props
 - Adhesion coefficient of husk to kernel
 - Moment of inertia (a function of shape of the grain)

Machines for SM processing

- Graders / Shakers
 - Size based segregation
- Destoners
 - Weight based segregation
- Air classifier / Aspirator
 - Weight & buoyancy based segregation
- Hullers
 - Separate the edible (kernel) and non edible (husk)

+91-99000-54878 dwiji@themillet.org

At each stage of SM processing

Challenges in Grading

- Sieve selection strongly dependent on material on hand
- Need to use a slightly different sieve size ... if 1.5mm is getting clogged
 - Use a 1.45 mm sieve or
 - Use a 1.55 mm sieve
- One set of sieves for all varieties of a grain is a compromise ... sometimes its ok, sometimes it is not!

Challenges in Destoning

- Bed mesh selection and tuning
- Removing mud balls from clay rich soil areas
 - Almost same density as grains

Challenges in Aspirating

- Tuning the aspirator to not remove even broken grains
 - Strongly dependent on grain shattering coefficient
 - Dampener design should cover the full range

Challenges in Hulling

- Unhulled grains
 - Grains in output
- Incomplete hulling
 - hull getting loosened but not removed
- Broken Grains
 - Kernel shattering

In this presentation

- Challenges in SM
 processing
- Available hulling technologies for SMPUs
- Ease of use criteria for comparing hulling technologies
- Conclusion

Foxtail millet hulls discarded by a bird after eating up the kernel inside; note the beautiful single split in the hull

Hulling Technologies

- Abrasion Emery
- Abrasion Rubber roller
- Impact Centrifugal

Abrasion – Emery

- Grains pass through two 'dressed' emery surfaces – one stationary and the other rotating
- Shear force used to dehusk grains
- Critical grain parameter size

Abrasion – Rubber roller

- Grains pass in between two (or more) rubber rollers rotating at slightly different speeds
- Shear forces used to dehusk grains
- Critical grain parameter – size

Impact - Centrifugal

- Grains thrown at an appropriately prepared surface
- Impact force used to dehusk
- Critical grain parameter weight

In this presentation

- Challenges in SM
 processing
- Available hulling technologies for SMPUs
- Ease of use criteria for comparing hulling technologies
- Conclusion

Foxtail millet hulls discarded by a bird after eating up the kernel inside; note the beautiful single split in the hull

Ease of use criteria

- Drudgery
 - Number of iterations to get quality output
- Flexibility
 - To handle variations in input material
- Ease of Cleaning
 - To avoid pest infestation
- Maintenance & repair
 - Reliability of the unit

Competing interests

- Hulling efficiency
 - Number of hulled grains as a percentage of total grains in the output
- Shattering loss
 - Number of grains that are broken as a percentage of total grains in the output
- Bran loss
 - Number of grains that are white as a percentage of total grains in the output

Drudgery

- Higher the hulling efficiency fewer iterations
- In all technologies
 - does not get done in a single pass
- Iterating only the unhulled grains
 - Reduces shattering loss
 - Reduces bran loss
- Requires separating hulled and unhulled material
 - Grader and destoner are machines of choice
 - Better results observed when input is well graded **<u>before hulling</u>**
- Final manual cleaning for premium grade or when input material is sub-par

Flexibility

- To handle variations in input material
- In all technologies
 - Flow rate of input material
- Emery & Rubber roller
 - Spacing between surfaces to accommodate different size grains
- Impact huller
 - Change speed of impeller
 - Variable Frequency Drive
 - Change pulley(s)

Ease of Cleaning

- Millets are good for not just humans
- Highest probability of pest infestation is at the processing unit
- Design needs to be such that when cleaned after each shift / usage no material should be left within the machine

• <u>Currently NONE of the machines in the</u> <u>market meet this criteria</u>

Maintenance & repair

- Critical to reliability of the unit
- Maintenance & trouble shooting by operators
- Trained local mechanics
- Availability of parts and components
 - Generic, off the shelf parts
 - Specialized vendor dependent parts
- Down time for
 - period maintenance
 - repair

In this presentation

- Challenges in SM
 processing
- Available hulling technologies for SMPUs
- Ease of use criteria for comparing hulling technologies
- Conclusion

Foxtail millet hulls discarded by a bird after eating up the kernel inside; note the beautiful single split in the hull

Conclusion

Technology	Capital investment	Flexibility	Ease of cleaning	Maintenance & repair
Abrasion - Emery	Lowest	Reasonable	Challenging	Easiest
Abrasion - Rubber roller	High	Reasonable	Challenging	Fairly high cost
Impact - centrifugal	High	Not as easy	Do-able, but not there in available machines	Reasonable

Thank you !